您好,欢迎来到网暖!

当前位置:网暖 » 站长资讯 » 建站基础 » 网络技术 » 文章详细 订阅RssFeed

预处理之白化

来源:网络整理 浏览:373次 时间:2022-01-27
预处理之白化

Fighting365 机器学习算法与Python学习

Contents

1 关键词
2 白化介绍
3 2D的例子
4 ZCA白化
5 正则化

1. 关键词
白化         whitening冗余         redundant方差         variance平滑         smoothing降维         dimensionality reduction正则化      regularization反射矩阵   reflection matrix去相关      decorrelation
2. 白化介绍

在(自动编码器优化之主成分分析)中,我们已经了解了如何使用PCA降低数据维度。在一些算法中还需要一个与之相关的预处理步骤,这个预处理过程称为白化(一些文献中也叫sphering)。举例来说,假设训练数据是图像,由于图像中相邻像素之间具有很强的相关性,所以用于训练时输入是冗余的。白化的目的就是降低输入的冗余性;更正式的说,我们希望通过白化过程使得学习算法的输入具有如下性质:
(i) 特征之间相关性较低;
(ii )所有特征具有相同的方差。

3. 2D的例子

下面我们先用一个2D例子描述白化的主要思想,然后分别介绍如何将白化与平滑和PCA相结合。
如何消除输入特征之间的相关性? 在前文(自动编码器优化之主成分分析)计算 x[^i][rot] = U[^T]x[^i] 时实际上已经消除了输入特征 x[i] 之间的相关性。得到的新特征 x[rot] 的分布如下图所示:

这个数据的协方差矩阵如下:

严格地讲, 这部分许多关于“协方差”的陈述仅当数据均值为0时成立。下文的论述都隐式地假定这一条件成立。不过即使数据均值不为0,下文的说法仍然成立,所以你无需担心这个。

x[rot] 协方差矩阵对角元素的值为 λ[1] 和 λ[2] 绝非偶然, 并且非对角元素值为0; 因此, x[rot,1]和 x[rot,2] 是不相关的, 满足我们对白化结果的第一个要求 (特征间相关性降低)。
为了使每个输入特征具有单位方差,我们可以直接使用 1/ sqrt(λ[i]) 作为缩放因子来缩放每个特征。具体地,我们定义白化后的数据 如下:

绘制出 x[PCAwhite],我们得到:

这些数据现在的协方差矩阵为单位矩阵 I 。我们说,x[PCAwhite] 是数据经过PCA白化后的版本: x[PCAwhite] 中不同的特征之间不相关并且具有单位方差。
白化与降维相结合。 如果你想要得到经过白化后的数据,并且比初始输入维数更低,可以仅保留 x[PCAwhite] 中前 k 个成分。当我们把PCA白化和正则化结合起来时,x[PCAwhite] 中最后的少量成分将总是接近于0,因而舍弃这些成分不会带来很大的问题。

4. ZCA白化

最后要说明的是,使数据的协方差矩阵变为单位矩阵 I 的方式并不唯一。具体地,如果 R 是任意正交矩阵,即满足 RR[^T] = R[^T]R = I (说它正交不太严格,R 可以是旋转或反射矩阵),那么 R x[PCAwhite] 仍然具有单位协方差。在ZCA白化中,令 R = U 。我们定义ZCA白化的结果为:

绘制x[ZCAwhite], 得到:

可以证明,对所有可能的 R ,这种旋转使得 x[Zcawhite] 尽可能地接近原始输入数据 。当使用 ZCA白化时(不同于 PCA白化),我们通常保留数据的全部 n 个维度,不尝试去降低它的维数。

5. 正则化

实践中需要实现PCA白化或ZCA白化时,有时一些特征值 λ[i 在数值上接近于0,这样在缩放步骤时我们除以 sqrt(λ[i]) 将导致除以一个接近0的值;这可能使数据上溢 (赋为大数值)或造成数值不稳定。因而在实践中,我们使用少量的正则化实现这个缩放过程,即在取平方根和倒数之前给特征值加上一个很小的常数 :

当x在区间 [-1, 1] 上时,一般取值为10[^(-5)]。对图像来说, 这里加上,对输入图像也有一些平滑(或低通滤波)的作用。这样处理还能消除在图像的像素信息获取过程中产生的噪声,改善学习到的特征。
ZCA 白化是一种数据预处理方法,它将数据从 x 映射到 x[ZCAwhite]。 事实证明这也是一种生物眼睛(视网膜)处理图像的粗糙模型。具体而言,当你的眼睛感知图像时,由于一幅图像中相邻的部分在亮度上十分相关,大多数临近的“像素”在眼中被感知为相近的值。因此,如果人眼需要分别传输每个像素值(通过视觉神经)到大脑中,会非常不划算。取而代之的是,视网膜进行一个与ZCA中相似的去相关操作 (这是由视网膜上的ON-型和OFF-型光感受器细胞将光信号转变为神经信号完成的)。由此得到对输入图像的更低冗余的表示,并将它传输到大脑。

参考文献:http://cs229.stanford.edu

推荐站点

  • 腾讯腾讯

    腾讯网(www.QQ.com)是中国浏览量最大的中文门户网站,是腾讯公司推出的集新闻信息、互动社区、娱乐产品和基础服务为一体的大型综合门户网站。腾讯网服务于全球华人用户,致力成为最具传播力和互动性,权威、主流、时尚的互联网媒体平台。通过强大的实时新闻和全面深入的信息资讯服务,为中国数以亿计的互联网用户提供富有创意的网上新生活。

    www.qq.com
  • 搜狐搜狐

    搜狐网是全球最大的中文门户网站,为用户提供24小时不间断的最新资讯,及搜索、邮件等网络服务。内容包括全球热点事件、突发新闻、时事评论、热播影视剧、体育赛事、行业动态、生活服务信息,以及论坛、博客、微博、我的搜狐等互动空间。

    www.sohu.com
  • 网易网易

    网易是中国领先的互联网技术公司,为用户提供免费邮箱、游戏、搜索引擎服务,开设新闻、娱乐、体育等30多个内容频道,及博客、视频、论坛等互动交流,网聚人的力量。

    www.163.com
  • 新浪新浪

    新浪网为全球用户24小时提供全面及时的中文资讯,内容覆盖国内外突发新闻事件、体坛赛事、娱乐时尚、产业资讯、实用信息等,设有新闻、体育、娱乐、财经、科技、房产、汽车等30多个内容频道,同时开设博客、视频、论坛等自由互动交流空间。

    www.sina.com.cn
  • 百度一下百度一下

    百度一下,你就知道

    www.baidu.com